ARIGNAR ANNA GOVERNMENT ARTS COLLEGE NAMAKKAL-637 002

(Affiliated to Periyar University, Salem) 2019 Regulation

Department of Mathematics Programme: B. Sc., Mathematics

PO No.	Programme Outcomes
	Upon Completion of the B. Sc., Mathematics Degree Programme,
	the graduate will able to
PO 1	Emerge with competency in the subject of Mathematics and apply
	knowledge to cater to the needs of Society/Employer/Institution/Own
	Business Enterprise
PO 2	Imbibe analytical/critical/logical/innovative thinking skills in the
	field of Mathematics and Statistics
PO 3	Acquire distinct traits and ethics with high professionalism to gain a
	broader insight into the domain concerned for nation building
PO 4	Communicate mathematical and statistical concepts, models,
	reasoning, explanation, interpretation and solutions clearly and
	effectively in multiple ways: orally, visually through FOSS, written
	reports and physical math models, as appropriate
PO 5	Employ efficient and accurate mathematical programming and
	computing tools to solve real-life problems

PSO No.	Programme Specific Outcomes
	Upon Completion of these courses the student would
PSO 1	Think in a critical manner.
PSO 2	Familiarize the students with suitable tools of mathematical analysis to handle issues and problems in mathematics and related sciences.
PSO 3	Acquire good knowledge and understanding to solve specific theoretical and applied problems in advanced areas of mathematics and statistics
PSO 4	Provide students/learners sufficient knowledge and skills enabling them to undertake further studies in mathematics and its allied areas on multiple disciplines concerned with mathematics.
PSO 5	Encourage the students to develop a range of generic skills helpful in employment, internships and social activities.

Course Title	CLASSICAL ALGEBRA
Subject Code	19UMA01
CO No.	Course Outcomes
CO 1	Understand the genesis of Binomial Series, Exponential series, Logarithmic series
CO 2	Learn various techniques of getting results of Characteristic roots and characteristic vectors of a matrix.
CO 3	Know the concepts of Reciprocal equations – Transformation of equations
CO 4	Formulate mathematical models in Horner's method for approximation of roots of a polynomial equation – Newton's
CO 5	Method of evaluating a real root correct to given decimal places

Course Title	DIFFERENTIAL CALCULUS
Subject Code	19UMA02
CO No.	Course Outcomes
CO 1	Understand the genesis of ordinary differential equations
CO 2	Learn various techniques of getting exact solutions of solvable first order differential equations and linear differential equations of higher order
CO 3	Know Jacobians, Maxima and Minima of functions of two variables
CO 4	Grasp the concept of Curvature and radius of curvature - Definitions, Cartesian formula for radius curvature
CO 5	Formulate mathematical models Envelope of the one parameter family of curves.

Course Title	OPERATION RESEARCH
Subject Code	19UMAE01
CO No.	Course Outcomes
CO 1	Analyze and solve linear programming models of real life situations
CO 2	Provide graphical solutions of linear programming problems with two variables, and illustrate the concept of convex set and extreme points
CO 3	Understand the theory of the simplex method
CO 4	Know about the relationships between the primal and dual problems, and to understand sensitivity analysis.
CO 5	Learn about the applications to transportation, assignment and two- person zero-sum game problems

Course	REAL ANALYSIS
1 itie	
Subject	19UMA10
Code	
CO No.	Course Outcomes
CO 1	Understand many properties of the real line \mathbb{R} and learn to define sequence in terms of functions from \mathbb{R} to a subset of \mathbb{R} .
CO 2	Recognize bounded, convergent, divergent, Cauchy and monotonic sequences to calculate their limit superior, limit inferior, and the limit of a bounded sequence
CO 3	Apply the ratio, root, alternating series and limit comparison tests for convergence and absolute convergence of an infinite series of real numbers
CO 4	Learn some of the properties of Riemann integrable functions
CO 5	Applications of the fundamental theorems of integration.

Course Title	MODERN ALGEBRA
Subject	19UMA09
Code	
CO No.	Course Outcomes
CO 1	Recognize the mathematical objects called groups.
CO 2	Link the fundamental concepts of groups and symmetries of
	geometrical objects.
CO 3	Explain the significance of the notions of cosets, normal subgroups,
	and factor groups
CO 4	Analyze consequences of Lagrange's theorem.
CO 5	Learn about structure preserving maps between groups and their
	consequences

Course	COMPLEX ANALYSIS
Title	
Subject	19UMA11
Code	
CO No.	Course Outcomes
CO 1	Visualize complex numbers as points of \mathbb{R} and stereographic
	projection of complex plane on the Riemann sphere
CO 2	Understand the significance of differentiability and analyticity of
	complex functions leading to the Cauchy Riemann equations.
CO 3	Learn the role of Cauchy Goursat theorem and Cauchy integral
	formula in evaluation of contour integrals Apply Liouville's theorem
	in fundamental theorem of algebra.
CO 4	Understand the convergence, term by term integration and
	differentiation of a power series.
CO 5	Learn Taylor and Laurent series expansions of analytic functions,
	classify the nature of singularity, poles and residues and application
	of Cauchy Residue theorem

Course	DISCRETE MATHEMATICS
Title	
Subject	19UMAE03
Code	
CO No.	Course Outcomes
CO 1	Learn about partially ordered sets, lattices and their types
CO 2	Understand Boolean algebra and Boolean functions,
CO 3	Understand logic gates, switching circuits and their applications.
CO 4	Assimilate various graph theoretic concepts and familiarize with
	their applications.
CO 5	In finally how apply in real life applications.

Course Title	NUMERICAL ANALYSIS
Subject	19UMAE05
Code	
CO No.	Course Outcomes
CO 1	Obtain numerical solutions of algebraic and transcendental equations.
CO 2	Find numerical solutions of system of linear equations and check the accuracy of the solutions.
CO 3	Learn about various interpolating and extrapolating methods.
CO 4	Solve initial and boundary value problems in differential equations using numerical methods.
CO 5	Apply various numerical methods in real life problems.

Course Title	C- PROGRAMMING FOR MATHEMATICS
Subject	19UMAS02
Code	
CO No.	Course Outcomes
CO 1	Understand and apply the programming concepts of C which is
	important for mathematical investigation and problem solving.
CO 2	Use mathematical libraries for computational objectives.
CO 3	Represent the outputs of programs visually in terms of well
	formatted text and plots.
CO 4	Understanding Switch Statement, Operator, GOTO Statement
CO 5	Working on WHILE Statement, Do Statement, FOR Statement,
	Jumps in Loops, Simple Programs

Course	LATEX THEORY
Title	
Subject	19UMAS03
Code	
CO No.	Course Outcomes
CO 1	Understand and apply the programming concepts of Basic LaTex –
	Sample document and Key Concepts.
CO 2	Use mathematical libraries for Equation environments – Fonts, hats
	and underlining braces
CO 3	Represent the outputs of programs visually in Further essential
	LaTex
CO 4	Understanding Spacing, Accented characters, Dashes and hyphens,
	quotation marks, troubleshooting
CO 5	Apply to Latex- Pinpointing the error, common errors, warning
	messages

Course Title	GRAPH THEORY
Subject Code	19UMA15
CO No.	Course Outcomes
CO 1	Learn about basic graphs and properties
CO 2	Learn about Operations on graphs
CO 3	Understand Eulerian Graphs, Hamiltonian graphs, and their applications.
CO 4	Study the concepts of Characterization of Trees
CO 5	Assimilate various graph theoretic concepts and familiarize with their applications

VCIPAL 14/222

PRINCIPAL ()(c) Aringnar Anna Government Arts College, Namakkal - 637 002. D.O. Code : CI-103.